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Adjacent Structures Connected by Viscous
Damper Subjected to Random Excitation
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Abstract—Dynamic response of two adjacent single degree-of-
freedom (SDOF) structures connected by viscous damper under
base excitation is investigated. The base excitation is modeled as
a stationary white-noise random process. The equations of
motion of coupled structures are derived and mean square
responses are obtained. The response parameters considered are
relative displacement and absolute acceleration. It is observed
that by increasing the damping coefficient of damper the mean
square displacement response and mean square acceleration
response are decreases and after certain value it again increases.
There is some optimum value of damping coefficient of damper
for which mean square response value attain minimum. A
parametric study is also carried out to investigate the effect of
system parameters on optimum damping coefficient of damper
and corresponding responses. The system parameters considered
are mass ratio and frequency ratio. It is found that viscous
damper is quite effective for response control of coupled
structures subjected to random excitation. It has been observed
that the frequency ratio has significant effect on the response
control of the coupled structure; where as the effect of mass ratio
is marginal.
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Optimum damping, Viscous damper.

1. INTRODUCTION

The natural disturbances like strong wind and earthquakes
produce excessive structural vibrations, which creates human
discomfort and many times lead to catastrophic structural
failure as well. In last decade, significant efforts have been
given for design of engineering structures with various control
strategies to increase their safety and reliability against strong
external excitations. Many energy dissipation devices and
control system have been developed to reduce the excessive
structural vibrations due to natural disturbances. These
control strategies are able to modify dynamically the response
of structure in a desirable manner, thereby termed as
protective systems for the new structures and the existing
structures can be retrofitted or strengthened effectively to
withstand future natural disturbances. The control system and
the structure do not behave as independent dynamic system
but rather interact with each other. In addition, the interaction
effects also occur between the excitation and structure (i.e.
soil-structure interaction). According to the energy
consumptions, control system can be classified as active,
passive, semi-active and hybrid control system.

Active control system may be defined as a system, which
provide additional energy to the controlled structure and

opposite to that delivered by the dynamic loading. The
control forces are supplied to the structure by means of
electro-hydraulic or electro-mechanical actuators, which
require a large power source for their operation. Control
forces are developed based on the feedback from sensors that
measure the excitation and/or the response of the structure.
The feedback from the structural response may be measured
at locations remote from the location of the active control
system. As a result, active control mechanisms are more
complex mechanism, requiring Sensors and
evaluator/controller equipments. Cost and maintenance of
such system is also significantly higher than that of passive
devices. Various active control mechanisms are active
mass/tuned mass dampers, active tendon system, and active
tuned liquid damper.

Passive control system may be defined as a system, which
does not require an external power source for operation and
utilizes the response of the structure to develop the control
forces. Control forces are developed at the location of the
passive control system, as a function of the response of the
structure. The various passive vibration control mechanisms
are viscous dampers, visco-elastic dampers, friction dampers,
tuned mass dampers, tuned liquid dampers, metallic yielding
dampers, and base isolators. More complete details on the
mechanics and working principles of these devices can be
found in reference [1].

Semi-active control system may be defined as a system
which is combination of passive and active control
mechanism. Semi-active control system require a small
external power source for operation (e.g. a battery) and utilize
the motion of the structure to develop the control force, the
magnitude of which can be adjusted by external power
source. The advantage is that in case of power failure the
passive component of the control will still offer some
protection. Control forces are developed based on feedback
from sensors that measure the excitation and/or the response
of the structure. The feedback from the structural response
may be measured at locations remote from the location of the
semi-active control system. The various semi-active
mechanisms are variable orifice dampers, variable friction
dampers, variable stiffness dampers, controllable tuned liquid
dampers, controllable fluid dampers (Electorheological (ER)
and Megnetorheological (MR)) dampers.

Hybrid control system consists of combination of passive
and active devices or combined passive and semi-active
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devices. Because multiple control devices are operating,
hybrid control system can alleviate some of the restriction and
limitations that exist when each system is acting alone. Thus,
higher level of performance may be achievable. An
additional benefit of hybrid system is that, in the case of
power failure, the passive components of the control still offer
some of protection. The various hybrid mechanisms are
hybrid mass dampers and hybrid base isolation.

Because of limited availability of land and preference for
centralized services, buildings in a modern city are often built
closely to each other. Some tall buildings are often built with
podium structures to achieve a large open space for parking
shops, restaurants, and hotel lobbies at the ground level. If the
separation between adjacent structures is not sufficient, or if
they are not separated with proper structural connections
mutual pounding may also occur during an earthquake, which
has been observed during Loma Prieta earthquake [2] and
many more past earthquake events.

The concept of linking adjacent structures using passive
dampers, active dampers and semi-active dampers has thus
been proposed to improve their dynamic performance. Using
special energy dissipation devices of appropriate capacity and
at proper position, the energy dissipation capacity of the
adjacent structures can be increased. The concept is to allow
two dynamically dissimilar structures to exert control force
upon one another. It improves the performance of the system
by reducing overall response of the system. Moreover, it also
overcomes the problem of pounding, which is more sever-
load condition than the case of the vibration without
pounding. The dynamic response of adjacent structures
connected by friction damper has been investigated [3]. The
seismic response of dynamically similar adjacent building
connected with viscous dampers have been investigated [4]

In this paper the adjacent structures connected with viscous
damper under random excitation is studied, and the
effectiveness of the viscous damper for random response
reduction of adjacent structure is investigated.

II. MODELING OF CONNECTED STRUCTURES

Let us consider two adjacent structures connected with a
viscous damper as shown n Fig.1. The adjacent structures are
idealized as SDOF systems and referred as Structurel and 2.
The two structures are assumed to be symmetric with their
symmetric planes in alignment. The ground motion is
assumed to occur in one direction in the symmetric planes of
the structures so that the problem can be simplified as a two-
dimensional problem as shown in Fig.1. Both the structures
are assumed to be supported on stiff ground and subjected to
the same ground acceleration. The viscous damper is modeled
as linear dash pot, in which the force is proportional to the
relative velocity of its both ends. The corresponding
mathematical model of the damper connected structure is
shown in Fig. 2. Let m,c,,kand m,,c,,k,be the mass,

damping coefficient and stiffness of the Structure 1 and 2,
respectively. The natural frequency of the structure is given

by o =.k/m and o,=

respectively. The damping ratio of Structure 1 and 2, is given
by & =¢ /2mo, and &, = ¢, /2m,w, , respectively. Let 3 and

k,/m, for Structure 1 and 2,

u be the frequency and mass ratio of two structures defined

as
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Let c, be the damping coefficient of the damper, which is

expressed in the mathematical form as
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where &, is the normalized damping coefficient of damper.
The governing equations of motion for the damper connected
system can be written as
mx, +ex, +kx, e, () —x,) =-mx, “4)
myx, + 6, X, +kyx, —c, (%, —x,) = —myx, (5)
where x and x, are the displacement responses, relative to
the ground of Structures 1 and 2, respectively; and x,is the

ground acceleration.
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Fig. 1 Adjacent Structures with viscous damper
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Fig. 2 Mathematical model

III. RESPONSE TO STATIONARY WHITE-NOISE RANDOM
EXCITATION

The analytical expressions for mean square displacement and
mean square acceleration responses of the damper connected
system are derived. The structural control criteria depend on
the nature of dynamic loads and the response quantities of
interest. Minimizing the relative displacement or absolute
acceleration of the system has always been considered as the
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control objective. In case of flexible structures, displacement
are predominant that need to be controlled. On contrary to
this, in case of stiff structures, accelerations are of more
concern generating higher inertia forces in structures, which
should be mitigated. Let the coupled system subjected to the
base accelerationx,, modeled as Gaussian white-noise

random process with constant power spectral density S, . The
mean square displacement, zel and ofz of Structures 1 and 2,

respectively are expressed as [5]

ol = T|xl(iw)|2 S, do (6)

ol = T|x2(ico)|2 S, dw (7

where x, (iw) and x, (iw) are the harmonic transfer function for

displacement responses, x,and x,respectively and are

expressed by
2 2 .
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by integrating Eqgs. (6) and (7), considering equal damping
ratio in both the structures & =&, =&, the mean square

displacement, o"f1 and sz of Structures 1 and 2, respectively

are given as
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The mean square acceleration, 0'; and o of Structures 1

and 2, respectively are expressed as [5]
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where x,,(iw)and x,,(iw) are the harmonic transfer function

x, (i) S, do

(13)

for acceleration responses, x, and x, respectively and are

expressed by
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The mean square acceleration response can be obtained by
integrating Eqs. (12) and (13). Now considering equal
damping ratio in both the structures i.e. § =&, =&, the mean

square acceleration, Gi and 0'52 of Structures 1 and 2,

respectively are given as
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IV. NUMERICAL STUDY

The wvariation of frequency response function for
displacement and absolute acceleration for an undamped and
5% structural damping are shown in Figs. 3 and 4,
respectively for different value of &,. The two SDOF

connected structures with their mass ratio y =1and frequency
ratio 8 = 2 are considered implying that the Structure 1 is said
to be soft structure and Structure 2 is said to be stiff structure.
From the above Figs. it is interesting to note that with the
increase in the&,, the value of peak frequency response

functions decrease and after reaching certain minimum value
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it increases with further increase of &, . For low values of ¢, ,

the peak value of frequency response function occurs at the
natural frequency of the respective structures and it shifts
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Fig. 3 Variation of frequency response function of
displacement against excitation frequency for different
damper damping coefficient (=1 5 =2)
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Fig. 4 Variation of frequency response function of
acceleration against excitation frequency for different damper
damping coefficient (u =1 =2)
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Fig. 5 Variation of mean square response against damping
coefficient of damper (u=1 =2)

to the combined frequency of the structures for higher values
of the &,. This indicates that there is certain value of &, for

which the area of the frequency response function will
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become minimum and yielding the minimum value of the
mean square response. The variations of mean square
responses of the two structures against the &, are shown in

Fig. 5 for different damping ratios of the connected structures
(ie.& =&, =0,0.02 and 0.05). It is observed from the graph

that as &, increase, the mean square responses decreases up to
certain value and with further increase in &, the mean square
responses increase. There exists an optimum value of &, to

yield the mean square responses under stationary white-noise
random excitation. Thus, for a given structural system
connected with a viscous damper, there exist an optimum
value of the damping for which the mean square response of
structures attain the minimum value.

V. EFFECT OF SYSTEM PARAMETERS

The variation of optimum damping coefficient of damper and
corresponding mean square displacement response against the
frequency ratio B for different value of mass ratio (i.e.

u=1,1.5,2) are shown in Fig. 6. It is observe that increase in

frequency ratio increases the optimum damping coefficient of
damper, where as it decreases the mean square responses. An
increase in mass ratio decreases the optimum damping
coefficient of damper for both structures. An increase in mass
ratio increases the mean square displacement response of the
flexible structure, where as it decreases the mean square
displacement of stiff structure.
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Fig. 6 Effect of frequency ratio and mass ratio on the
optimum damping of damper and corresponding mean square
displacement response

The wvariation of optimum damping coefficient and
corresponding mean square acceleration response against the
frequency ratio [ for different value of mass ratio (i.e.

u=1,1.5,2) are shown in Fig. 7. It is observed that increase

in frequency ratio increases the optimum damping of damper
and decreases the corresponding mean square acceleration
responses. An increase in mass ratio decreases the optimum
damping of damper. An increase in mass ratio increases the
mean square response of the flexible structure where as it
decreases the mean square acceleration response of stiff
structure.
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Fig. 7 Effect of frequency ratio and mass ratio on the
optimum damping of damper and on corresponding mean
square acceleration response

VI. CONCLUSIONS

The dynamic response of two adjacent SDOF structures
connected with viscous damper subjected to random
excitation is investigated. The effect of system parameters
such as frequency ratio and mass ratio on the optimum
damping of damper and corresponding mean square response
is investigated. From the trends of the results of present study,
the following conclusions are drawn.

1 The viscous damper is found quite effective for
random response control of adjacent SDOF coupled
structures.

2 For a given coupled structural system there exists an
optimum damper damping for which the mean square
displacement and mean square absolute acceleration of
connected structures attains the minimum value.

3 The optimum damping of the viscous damper increases
with the increase in the frequency ratio and decrease
with the increase in the mass ratio. The corresponding
mean square responses at optimum damper damping
decreases with the increase in the frequency ratio.

4 The effect of mass ratio on mean square displacement
and mean square acceleration responses is marginal.
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