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Abstract-- Analysis of transversely loaded rectangular plates is
presented by an approach which combines equilibrium
equations and compatibility conditions in a single set of
equations to provide results for moments and deflections
simultaneously. A rectangular element with 9 force and 12
displacement degrees of freedom, which is developed based on
Integrated Force Method, is employed to discretize the
rectangular plates subjected to patch and hydrostatic loading.
Numerical results are presented in tabular and graphical forms
and are compared with those based on classical formulation. A
good agreement is found when 5 x 5 discretization is used for
quarter plate, due to two way symmetry, in case of patch loading
and when 5 x 10 mesh is used for half plate, due to one way
symmetry, in case of hydrostatic loading.

Index Terms— IFM, Hydrostatic loading, Patch loading, Plate
bending, Matlab.

I. INTRODUCTION

HIN plates are the key structural elements in many

engineering applications. Ships, box girders, plate girders

aircraft and containers are few of the major large-scale
structures using metal plates. A non-metallic plate, such as
sheet glass and plywood also has a wide application in lighter
structures. The usual function of a thin plate is to withstand a
transverse loading, or to act with adjoining structure in
sustaining in-plane forces, or both. This paper deals with
transverse loading alone with the out of plane deformation
being so small that it is good enough to consider only small
deflection theory. In other words, it is based on Kirchoff’s
thin plate theory where it is assumed that the lateral loads are
supported through bending action only and membrane forces
are absent.

The problem of thin rectangular plates is well known in
classical theory of elasticity and a number of analytical
methods are well discussed in number of books [1-3]. With
the availability of computers, the numerical methods such as
finite difference method, finite element method, finite
difference energy method and discrete energy method have
been widely used for plate analysis [4-6].

A numerical method of analysis, known as Integrated
Force Method (Patnaik [7]), which is based on coupling of
equilibrium matrix and compatibility matrix in the single
matrix, is employed in the present paper to predict the
behavior of rectangular plates under patch loading. Such
loading is frequently encountered in practice, e.g., wheel load
on man hole covers, wheel load on crane girders, diaphragms
on bearing of box girders, and during the process of erecting
large plate- and box- girder bridges by launching. External

loads may be distributed over a wide range of distances
varying from over the whole area to over an extremely
narrow area. Also, in the present study, plate subjected to
hydrostatic loading (linearly varying distribution of
transverse pressure), which is quite common in liquid
container, is considered for the analysis.

After giving elementary theory of integrated force method
and solution steps, results obtained for a number of simply
supported rectangular plates under two different types of
loading i.e. patch loading and hydrostatic loading are
presented in tabular and graphical forms with comparison of
results with those based on classical methods [2, 3]

II. ELEMENTARY THEORY OF IFM

The IFM equations for a continuum discretized by finite
number of elements with ‘n’ and ‘m’ force and displacement
degrees of freedom respectively, are obtained by coupling the
‘m’ number of equilibrium equations and r = n — m
compatibility conditions. The m equilibrium equations (EEs)
are written as

[B] {F} = {P} (M
and the’ r’ compatibility conditions are written as
[CI[G] {F} = {8R} 2)

These conditions are combined to obtain basic fundamental
equation as follows:

(8L iy [ 2L ] O (51 53 = 7 G)

[clG] BR}

The displacements {X} are back calculated using the
following equation,

{X} = [ {[G] {F} + {B"} 4)

where, [J] = m rows of [[S]'I]T’ [B] is of m x n size
rectangular matrix which is sparse and unsymmetrical, [G] is
the symmetrical flexibility matrix; it is a block-diagonal
matrix where each block represents a flexibility matrix for an
element, [C] is the compatibility matrix of size r x n, {0R} =
-[C] {B} " is the effective deformation vector with {B}° being
the initial deformation vector of dimension ’n’, here its value
equals to zero, [S] is the IFM governing unsymmetrical
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matrix of size n x n, [J] is the m x n size deformation
coefficient matrix which is back-calculated from [S] matrix.

The IFM formulation procedure requires calculation of
following three matrices: Equilibrium matrix [B] which links
internal forces to external loads, Compatibility matrix [C]
which governs the deformations and Flexibility matrix [G]
which relates deformations to forces. Both equilibrium and
compatibility matrices of the IFM are unsymmetrical,
whereas the material constitutive and the flexibility matrices
are symmetrical. The complete formulation of above matrices
for a rectangular plate bending element is given elsewhere
(Doiphode et al. [8]) and hence it is not repeated here.

III. SOLUTION STEPS

Step 1: A four-nodded rectangular element of size 2a x 2b
with 9 fdof and 12 ddof is used for discretizing the problem
in to desired number of elements. The elemental equilibrium
matrix [B°] is obtained by substituting the value of a and b
and are assembled to obtain the global equilibrium matrix.

Step 2: The compatibility matrix is obtained from the
displacement deformation relations (DDR) i.e. p = [B]'{X}.
In the DDR, n deformations which correspond to n force
variables are expressed in terms of m displacements. The
problem requires r = n — m compatibility conditions [C] that
are obtained by eliminating the m displacements from the n
DDR’s. These are obtained by using auto-generated Matlab
based computer program by giving input as upper part of the
global equilibrium matrix.

Step 3: The flexibility matrix for the problem is obtained by
diagonal concatenation of the elemental flexibility matrices.

Step 4: By multiplying compatibility matrix [C] and global
flexibility matrix [G] bottom most part of the global
equilibrium matrix is obtained. Assembling both gives
complete [S] matrix of size n x n, which comprises of
equilibrium equations and compatibility conditions. The forces
are then obtained by using Matlab’s inverting procedure.

Step 5: The displacements are calculated by using relation
({X} = [J][G]{F}), where [J] = m rows of matrix [[S]"]"

IV. NUMERICAL EXAMPLES

In order to test the accuracy and usefulness of the
integrated force method, it is applied to a variety of problems.
All the plates are considered of steel with modulus of
elasticity as 2.01 x 10" N/m® and Poisson’s ratio as 0.3. For
all the problems, solution is obtained using a software
developed in VB.Net using appropriate data as per loading
and boundary conditions. For the development of
compatibility conditions and for the solution of equations
which involves both equilibrium and compatibility conditions
Matlab software is used. Matlab software is also used for
plotting the moment contours and deflection profiles. The
following applications are intended to demonstrate the

capability of the suggested formulation.

1) Square Plate under Patch Loading

A simply supported square plate of size 4000 mm x 4000
mm x 200 mm is studied under a central patch loading of
intensity 10 kN/m” over an area 1600 mm x 1600 mm as
shown in Fig. 1. Due to two way symmetry only quarter of
the plate is analysed by discretizing into 5 x 5 mesh. Results
are obtained for Mx, My and Mxy and w, ©, and ©y at all the
nodes. Some of the results are presented here in Table I and
are compared with the classical results [2]. Also contours of
Mx and deflection profile are included here in Figs. 2 and 3
respectively.
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Fig. 1 Plate under patch and hydrostatic loading.

TABLE I
RESULTS FOR SQUARE PLATE UNDER PATCH LOADING

Deflection w in mm Moment Mx in N-m

Node — et EXACT IFM EXACT
1 0.0000 0.0000 0.00 0.00
2 0.0073 0.0079 956 967
3 0.0148 0.0151 1838 1840
4 0.0198 0.0207 2501 2533
5 0.0237 0.0241 2956 2987
6 0.0249 0.0252 3102 3132
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Fig. 2 Contours of Mx for plate under patch loading.
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Fig. 3 Deflection profile of quarter plate under patch loading.

2) Rectangular Plate under Patch Loading

Next, a rectangular plate of size 6000 mm x 4000 mm x
200 mm simply supported along all edges is considered under
partial patch loading of intensity of 10kN/m* over a size 2400
mm x 1600 mm. Results obtained for w displacement and
moment Mx at all the nodes lying on the central line along x
direction are presented here in Table II and are also plotted in
Fig. 4 for the quarter rectangular plate along with the results
for square plate.

TABLE I
RESULTS FOR RECTANGULAR PLATE UNDER PATCH LOADING

Deflection w in mm Moment Mx in N-m

Node —=eng EXACT  IFM EXACT
1 0.0000 0.0000  0.00 0.00
2 0.0133 00153 998 1055
3 0.0237 0.0286 2067 2098
4 0.0349 0.0393 2689 2706
5 0.0422 00463 3210 3246
6 0.0448 00487 3392 3412
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Fig. 4 Variation of deflection w along central line.
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3) Square Plate under Hydrostatic Loading

The third example considered here is that of a simply
supported square plate of size 4000 x 4000 x 200 mm
subjected to a hydrostatic loading ( uniformly varying lateral
load) of intensity 10 kN/m”. Due to one way symmetry, only
half of the plate is analysed by discretizing it into 10 x 5 grid.
Results obtained for lateral displacement w and moment Mx
at the nodes lying in the x — direction on the central line are
reported here in Table III and are compared with the available
classical solution [2]. Moment Mx contours are depicted in
Fig. 5 whereas deflection profile is shown in Fig. 6.

TABLE III
RESULTS FOR SQUARE PLATE UNDER
HYDROSTATIC LOADING

Deflection w in mm Moment Mx in N-m

Node

IFM EXACT IFM EXACT

1 0.0000 0.0000 0.00 0.00

2 0.0094 0.0097 827 852

3 0.0182 0.0188 1635 1687
4 0.0258 0.0265 2452 2492
5 0.0314 0.0323 3184 3218
6 0.0344 0.0354 3800. 3853
7 0.0343 0.0355 4211 4224
8 0.0308 0.0317 4265 4297
9 0.0235 0.0242 3765 3790
10 0.0128 0.0132 2479 2512
11 0.0000 0.0000  0.0000 0.000
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Fig. 5 Contours of Mx for plate under hydrostatic loading.

Deflection in mm

| 2 3 F —— ey Distance Along y — axis in m
Distance Along x — axis in m 2 3 g 0

Fig. 6 Deflection profile of half plate under hydrostatic loading.

4) Rectangular Plate under Hydrostatic Loading TABLE IV
Finally, a rectangular plate of size 6000 x 4000 x 200 mm RESULTS E{%%%%%?ﬁﬁ%ufgf DP I];%TE UNDER
is solved under a linearly varying load of intensity 10kN/m? D - . :
. L . g Node eflection w in mm Moment Mx in N-m
in the x direction. Again, one way symmetry is used to M EXACT M EXACT

discretized 6000 mm x 2000 mm portion of the plate into 10

x 5 grid. Some of the results obtained using the integrated 1 0.0000 0.0000 0.00 0.00
force method are compared in Table IV with those obtained 2 0.0163 0.0170 753 778
using the analytical method [3]. The values of lateral 3 0.0319 0.0333 1529 1560
deflection w anq moment Mx are r.eported in the t'flble for 4 0.0459 0.0479 2300 2374
nodes 1 to 11 lying on the central line of the plate in the x
direction. Also, variation of deflection w is depicted in Fig. 7 3 0.0572 0.0597 3054 3177
for square plate and rectangular plate having aspect ratio 6 0.0646 0.0674 3899 3998
(AR) as 1.0 and 1.5 respectively 7 0.0668 0.0697 4582 4683
8 0.0621 0.0648 5002 5169
9 0.0492 0.0514 4872 4973
10 0.0278 0.0290 3549 3667

—
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0.0000 0.0000 0.0000 0.000
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Fig. 7 Variation of displacement w along central line.

V. CONCLUSIONS

1. Analysis of rectangular plates subjected to patch and

hydrostatic loading is presented by an integrated force
approach which combines equilibrium and compatibility
conditions in a single set of equations. A four nodded
rectangular element with 9 force and 12 displacement
degrees of freedom is used with 5 x 5 discretization to
solve patch loading examples whereas 10 x 5
discretization is used to get the solution of square and
rectangular plates under hydrostatic loading. In all cases,
results are found in good agreement with those based on
classical formulation.

2. Interfacing a program developed in VB.Net with Matlab

software has not only helped in generating the
compatibility conditions and solution of equations but
also in producing attractive plots such as moment
contours and deflection profiles for both square and
rectangular plates when subjected to lateral loading.
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3. In the present paper, to take advantage of symmetry and

thus to reduce the total number of unknowns, plates
subjected to only central patch loading were analysed.
However, the integrated force method, with appropriate
discretization, can be used to solve any rectangular plate
problem subjected to any size patch load acting
anywhere on the plate.

4. In case of hydrostatic loading only simply supported edge

condition was considered. The suggested method,
however, is capable to simulate any type of boundary
condition required in modeling the plates used in
different types of liquid containers.
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